Categories

Search

Diberdayakan oleh Blogger.

Entri Populer

Total Tayangan Halaman

Sabtu, 27 April 2013

Dekoder 74LS47 untuk seven segment

Dekoder driver 74LS47 merupakan IC TTL yang mempunyai input 4 bit yaitu A, B, C, dan D serta 3 input ekstra RBI, RBO, LT. Ketiga input ekstra tersebut diaktifkan oleh suatu level rendah. Bilangan BCD tersebut dikodekan sehingga membentuk kode seven segmen yang akan menyalakan ruas-ruas yang sesuai pada peraga LED di dalamnya.
Gambar IC Dekoder 74LS47
Input lamp test (LT) akan menyalakan setiap segmen untuk melihat apakah segmen-segmen tersebut beroperasi. Selanjutnya Ripple Blanking Input RBI akan mematikan semua segmen bila rangkaian diaktifkan. Berikut ini adalah bentuk tampilan yang bisa ditampilkan oleh display seven segmen :
 
Gambar Bentuk Tampilan 7 segmen
Dari gambar diatas bisa diketahui bahwa hanya sebagian kecil saja dari karakter yang dapat ditampilkan oleh display 7 segmen. Cara mendapatkan bentuk tampilan seperti pada gambar diatas diketahui dari table kebenaran dekoder 74LS47 berikut :





Table Table Kebenaran dari Dekoder 74LS47

Aplikasi decoder 74LS47 pada seven segmet:

Semoga bermanfaat.
Sumber : http://fahmizaleeits.wordpress.com/2010/09/14/dekoder-74ls47-untuk-seven-segment/

PLC SIMULATOR

Program simulator sederhana PLC Omron seri CPM atau Sysmac. Nama program tersebut adalah PLC Simulator versi 1.0 karya Tang Tung Yan, sebagaimana ditunjukkan pada gambar V.27 dan dengan spesifikasi:
• Model PLC yang didukung: seri CPM;
• Hanya menerima masukan kode-kode tangga atau mnemonik saja
• Kode-kode tangga yang didukung: LD, NOT, AND, OR, BLK, TIM, CNT, DIFU dan  SIFT;
• Jangkauan masukan: 00 hingga 15 (16 masukan);
• Jangkauan keluaran: 1000 hingga 1015 (16 keluaran);
• Jumlah dan Jangkauan timer 00 hingga 07 (0,1 detik hingga 60 menit);
• Jumlah dan Jangkauan pencacah: 00 hingga 07 (0 hingga 9999);
• Relai internal: 0000 hingga 2000
Perangkat lunak PLC Simulator ini memiliki kelemahan tidak adanya pembuatan atau penyurtingan diagram tangga sebagaimana dijumpai paca Syswin. Dengan demikian, jika kita ingin melakukan simulasi dari diagram tangga yang dibuat menggunakan Software Syswin, maka harus kita lihat kode mnemonik-nya (statement list) dengan cara memilih jaringan atau blok yang terkait dan menekan Ctrl+F8, sehingga akan ditampilkan jendela seperti ditunjukkan pada gambar V.27.

 Jangan lupa juga mengakhiri programnya dengan perintah END. PLC Simulator v1.0 ini akan digunakan dalam pembahasan contoh-contoh aplikasi, berkas simulator juga disediakan dalam CDROM sehingga Anda tidak perlu mengetikkan lagi. PLC Simulator ini mendukung beberapa kode tangga seperti: LD, OR, AND,
CNT, TIM, BLK, DIFU dan SIFT, dengan demikian kombinasi kode tangga yang dimungkinkan antara lain:
• LD, LD NOT;
• LD TIM, LD NOT TIM;
• LD CNT, LD NOT CNT;
• OR, OR BLK, OR TIM, OR CNT;
• OR NOT, OR NOT BLK, OR NOT TIM, OR NOT CNT;
• AND, AND BLK, AND TIM, AND CNT;
• AND NOT, AND BLK, AND NOT TIM, AND NOT CNT;
• OUT, OUT NOT, DIFU dan SFT;
Beberapa perintah, seperti DIFD, sama sekali tidak dikenal, sehingga beberapa aplikasi yang dibahas harus dilakukan modifikasi agar dapat dijalankan dengan PLC Simulator ini. Selain itu perintah BLK hanya khusus pada PLC Simulator, digunakan untuk antisipasi blok yang menggunakan bit TR (lihat kembali pembahasan
pada pasal 111.1.8). Perintah SIFT perilakunya agak berbeda dengan SIFT pada PLC yang sesungguhnya (akan dibahas lebih lanjut pada Bab VII). Berikut ini keterangan singkat tentang DIFU dan SIFT pada perangkat lunak PLC Simulator: DIFU digunakan jika diinginkan bentuk pulsa (ON hanya sesaat), misalnya:
LD 00000
OUT 01000
Pada potongan program tersebut, jika masukan 000.00 diaktifkan, maka keluaran 010.00 akan diaktifkan selama masukan 000.00 aktif. Bandingkan dengan potongan program berikut:
LD 00000 DIFU 01000

Potongan program kedua ini memiliki perilaku berbeda, jika masukan 000.00 diaktifkan, maka keluaran 010.00 akan aktif untuk satu waktu scan saja, kemudian setelah itu akan non-aktif (OFF) walaupun masukan 000.00 tetap aktif.
Perintah SFT digunakan untuk melakukan penggeseran logika. SFT membutuhkan tiga masukan: masukan data logika, sinyal detak dan reset, perhatikan contoh berikut:
LD 00000 ; masukan sinyal detak DIFU 2000
LD 00001 ; masukan data logik fungsi SFT LD 02000
LD 00002 ; masukan RESET
SFT 01008 01005 ; geser dari 01008 hingga 01005
Catatan: pemrogram bertanggung-jawab untuk memastikan bahwa sinyal detak hanya mengandung satu pulsa saja. Jika masukannya berupa ON kontinyu, maka proses penggeseran akan berlangsung terus menerus. Berbeda dengan PLC Sysmac yang hanya tepicu saat transisi OFF ke ON saja, selama ON tidak dilakukan penggeseran bit.
Saat proses penggeseran terjadi, maka logika pada 010.00 akan digeser ke 010.01, sedangkan yang ada di 010.01 akan digeser ke 010.02, demikian seterusnya. Program tersebut akan melakukan penggeseran bit dari kid ke kanan, jika diinginkan sebaliknya tuliskan kebalikannya, misalnya SFT 01005 01000. Aplikasi PLC CPM1A/CPM2A (Sysmac) Dasar.
Berikut ini akan diberikan contoh-contoh aplikasi PLC Omron seri CPM1 A atau CPM2A dasar berikut dengan pembahasannya. Aplikasi dasar yang dimaksudhkan disini adalah aplikasi-aplikasi contoh penggunaan beberapa fungsi yang dimiliki PLC CPM1 atau CPM2.
Sedangkan aplikasi nyata-nya akan dibahas pada pasal VI1.2. Diagram tangga atau aplikasi-aplikasi yang akan dibahas berikut ini sudah diuji-coba menggunakan seri CPM2A dan PLC Simulator v1.0.
ON OFF Dua Tombol atau Saklar (Interlock)

DESKRIPSI APLIKASI
PLC Omron akan digunakan untuk membuat sebuah aplikasi sangat scderhana, yaitu menghidupkan dan mematikan suatu alat dengan dua tombol, satu tombol picuan untuk START dan satu lagi untuk STOP. Rangkaian ini juga mengandung sifat interlockatau penguncian internal.

DIAGRAM TANGGA
Berkas: onoff . swp
KETERANGAN DIAGRAM TANGGA
Keluaran harus tetap ON hanya dengan sekali picuan dari tombol START (000.00), sehingga harus ada cara menyimpan status ON tersebut, yaitu dengan meng- OR-kan dengan status keluaran 010.00 itu sendiri (baris-1 dan 2), kemudiar. di-AND NOT-kan dengan tombol STOP, agar saat tombol STOP ON (walau hanya sesaat), akan memutuskan status keluaran maupun tombol START (baris-3 dan 4).
Untuk simulasinya digunakan berkas onoff .plc, buka dengan PLC Simulator versi 1.0, sebagaimana ditunjukkan pada gambar VI1.2. Lakukan percobaan dengan mengklik masukan 000.00 (START) kemudian amati keluaran (010.00) dan klik pada masukan 000.01 (STOP) dan amati keluarannya (010.00).
Penundaan ON Keluaran (ON Delay) DESKRIPSI

APLIKASI
PLC Omron akan digunakan untuk membuat sebuah aplikasi sangat sederhana  lainnya, yaitu menghidupkan suatu alat setelah 5 detik tombol START ditekan dan akan menahan status keluaran tetap ON selama tombol START juga ON.

Untuk lebih jelasnya silahkan download PLC Simulatornya  disini
Atau bila anda ingin simulasi ladder diagram dan contoh kasus, download disini
Semua file dalam bentuk WinRar, apabila dikomputer anda belum terinstall aplikasi WinRar silahkan download aplikasi WinRar.

Sumber : http://www.choirul-anwar.blogspot.com/

Prinsip Kerja Generator sinkron

Gambar 1 akan memperlihatkan prinsip kerja dari sebuah generator AC dengan dua kutub, dan dimisalkan hanya memiliki satu lilitan yang terbuat dari dua penghantar secara seri, yaitu penghantar a dan a’.

 
Gambar 1. Diagram Generator AC Satu Phasa Dua Kutub.
 

Lilitan seperti disebutkan diatas disebut “Lilitan terpusat”, dalam generator sebenarnya terdiri dari banyak lilitan dalam masing-masing fasa yang terdistribusi pada masing-masing alur stator dan disebut “Lilitan terdistribusi”. Diasumsikan rotor berputar searah jarum jam, maka fluks medan rotor bergerak sesuai lilitan jangkar. Satu putaran rotor dalam satu detik menghasilkan satu siklus per detik atau 1 Hertz (Hz).

Bila kecepatannya 60 Revolution per menit (Rpm), frekuensi 1 Hz. Maka untuk frekuensi f = 60 Hz, rotor harus berputar 3600 Rpm. Untuk kecepatan rotor n rpm, rotor harus berputar pada kecepatan n/60 revolution per detik (rps). Bila rotor mempunyai lebih dari 1 pasang kutub, misalnya P kutub maka masing-masing revolution dari rotor menginduksikan P/2 siklus tegangan dalam lilitan stator.


Untuk generator sinkron tiga fasa, harus ada tiga belitan yang masing-masing terpisah sebesar 120 derajat listrik dalam ruang sekitar keliling celah udara seperti diperlihatkan pada kumparan a – a’, b – b’ dan c – c’ pada gambar 2. Masing-masing lilitan akan menghasilkan gelombang Fluksi sinus satu dengan lainnya berbeda 120 derajat listrik. Dalam keadaan seimbang besarnya fluksi sesaat :

ΦA = Φm. Sin ωt
ΦB = Φm. Sin ( ωt – 120° )
ΦC = Φm. Sin ( ωt – 240° )


 
Gambar 2. Diagram Generator AC Tiga Fasa Dua Kutub

Besarnya fluks resultan adalah jumlah vektor ketiga fluks tersebut adalah:
ΦT = ΦA +ΦB + ΦC, yang merupakan fungsi tempat (Φ) dan waktu (t), maka besar- besarnya fluks total adalah:
ΦT = Φm.Sin ωt + Φm.Sin(ωt – 120°) + Φm. Sin(ωt– 240°). Cos (φ – 240°)

Dengan memakai transformasi trigonometri dari :

Sin α . Cos β = ½.Sin (α + β) + ½ Sin (α + β ),

maka dari persamaan diatas diperoleh :

ΦT = ½.Φm. Sin (ωt +φ )+ ½.Φm. Sin (ωt – φ) + ½.Φm. Sin ( ωt + φ – 240° )+ ½.Φm. Sin (ωt – φ) +½.Φm. Sin (ωt + φ – 480°)

Dari persamaan diatas, bila diuraikan maka suku kesatu, ketiga, dan kelima
akan silang menghilangkan. Dengan demikian dari persamaan akan didapat
fluksi total sebesar, ΦT = ¾ Φm. Sin ( ωt - Φ ) Weber .

Jadi medan resultan merupakan medan putar dengan modulus 3/2 Φ dengan
sudut putar sebesar ω. Maka besarnya tegangan masing-masing fasa adalah :

E maks = Bm. ℓ. ω r Volt

dimana :

Bm = Kerapatan Fluks maksimum kumparan medan rotor (Tesla)
ℓ = Panjang masing-masing lilitan dalam medan magnetik (Weber)
ω = Kecepatan sudut dari rotor (rad/s)
r = Radius dari jangkar (meter)



Generator Tanpa Beban

Apabila sebuah mesin sinkron difungsikan sebagai generator dengan diputar pada kecepatan sinkron dan rotor diberi arus medan (If), maka pada kumparan jangkar stator akan diinduksikan tegangan tanpa beban (Eo), yaitu sebesar:

Eo = 4,44 .Kd. Kp. f. φm. T Volt

Dalam keadaan tanpa beban arus jangkar tidak mengalir pada stator, sehingga tidak terdapat pengaruh reaksi jangkar. Fluks hanya dihasilkan oleh arus medan (If). Bila besarnya arus medan dinaikkan, maka tegangan keluaran juga akan naik sampai titik saturasi (jenuh), seperti diperlihatkan pada gambar 3. Kondisi generator tanpa beban bisa digambarkan rangkaian ekuivalennya seperti diperlihatkan pada gambar 3b.



 
Gambar 3a dan 3b. Kurva dan Rangkaian Ekuivalen Generator Tanpa Beban


Generator Berbeban

Bila generator diberi beban yang berubah-ubah maka besarnya tegangan terminal V akan berubah-ubah pula, hal ini disebabkan adanya kerugian tegangan pada:
• Resistansi jangkar Ra
• Reaktansi bocor jangkar Xl
• Reaksi Jangkar Xa

a. Resistansi Jangkar
Resistansi jangkar/fasa Ra menyebabkan terjadinya kerugian tegang/fasa (tegangan jatuh/fasa) dan I.Ra yang sefasa dengan arus jangkar.

b. Reaktansi Bocor Jangkar
Saat arus mengalir melalui penghantar jangkar, sebagian fluks yang terjadi tidak mengimbas pada jalur yang telah ditentukan, hal seperti ini disebut Fluks Bocor.
  

c. Reaksi Jangkar
Adanya arus yang mengalir pada kumparan jangkar saat generator dibebani akan menimbulkan fluksi jangkar (ΦA ) yang berintegrasi dengan fluksi yang dihasilkan pada kumparan medan rotor(ΦF).

Interaksi antara kedua fluksi ini disebut sebagai reaksi jangkar, seperti diperlihatkan pada Gambar 4. yang mengilustrasikan kondisi reaksi jangkar untuk jenis beban yang berbeda-beda.

Gambar 4a, 4b, 4c dan 4d. Kondisi Reaksi Jangkar.

Gambar 4a , memperlihatkan kondisi reaksi jangkar saat generator dibebani tahanan (resistif) sehingga arus jangkar Ia sefasa dengan GGL Eb dan ΦA akan tegak lurus terhadap ΦF.

Gambar 4b, memperlihatkan kondisi reaksi jangkar saat generator dibebani kapasitif , sehingga arus jangkar Ia mendahului ggl Eb sebesar θ dan ΦA terbelakang terhadap ΦF dengan sudut (90 -θ).

Gambar 4c, memperlihatkan kondisi reaksi jangkar saat dibebani kapasitif murni yang mengakibatkan arus jangkar Ia mendahului GGL Eb sebesar 90° dan ΦA akan memperkuat ΦF yang berpengaruh terhadap pemagnetan.

Gambar 4d, memperlihatkan kondisi reaksi jangkar saat arus diberi beban induktif murni sehingga mengakibatkan arus jangkar Ia terbelakang dari GGL Eb sebesar 90° dan ΦA akan memperlemah ΦF yang berpengaruh terhadap pemagnetan.

Jumlah dari reaktansi bocor XL dan reaktansi jangkar Xa biasa disebut reaktansi Sinkron Xs.

Vektor diagram untuk beban yang bersifat Induktif, resistif murni, dan kapasitif diperlihatkan pada Gambar 5a, 5b dan 5c.



Gambar 5a, 5b dan 5c. Vektor Diagram dari Beban Generator

Berdasarkan gambar diatas, maka bisa ditentukan besarnya tegangan jatuh yang terjadi, yaitu :

Total Tegangan Jatuh pada Beban:

= I.Ra + j (I.Xa + I.XL)
= I {Ra + j (Xs + XL)}

= I {Ra + j (Xs)}

= I.Zs

Menentukan Resistansi dan Reaktansi

Untuk bisa menentukan nilai reaktansi dan impedansi dari sebuah generator, harus dilakukan percobaan (test). Ada tiga jenis test yang biasa dilakukan, yaitu:

• Test Tanpa beban ( Beban Nol )
• Test Hubung Singkat.
• Test Resistansi Jangkar.

Test Tanpa Beban

Test Tanpa Beban dilakukan pada kecepatan Sinkron dengan rangkaian jangkar terbuka (tanpa beban) seperti diperlihatkan pada Gambar 6. Percobaan dilakukan dengan cara mengatur arus medan (If) dari nol sampai rating tegangan output terminal tercapai.


Gambar 6. Rangkaian Test Generator Tanpa Beban.

Test Hubung Singkat

Untuk melakukan test ini terminal generator dihubung singkat, dan dengan Ampermeter diletakkan diantara dua penghantar yang dihubung singkat tersebut (Gambar 7). Arus medan dinaikkan secara bertahap sampai diperoleh arus jangkar maksimum. Selama proses test arus If dan arus hubung singkat Ihs dicatat.


Gambar 7. Rangkaian Test Generator di Hubung Singkat.

Dari hasil kedua test diatas, maka dapat digambar dalam bentuk kurva karakteristik seperti diperlihatkan pada gambar 8.


Gambar 8. Kurva Karakteristik Tanpa Beban dan Hubung Singkat sebuah Generator.

Test Resistansi Jangkar

Dengan rangkaian medan terbuka, resistansi DC diukur antara dua terminal output sehingga dua fasa terhubung secara seri, Gambar 9. Resistansi per fasa adalah setengahnya dari yang diukur.


Gambar 9. Pengukuran Resistansi DC.


Dalam kenyataannya nilai resistansi dikalikan dengan suatu faktor untuk menentukan nilai resistansi AC efektif , eff R . Faktor ini tergantung pada bentuk dan ukuran alur, ukuran penghantar jangkar, dan konstruksi kumparan. Nilainya berkisar antara 1,2 s/d 1,6 .


Sumber : http://dunia-listrik.blogspot.com/2009/04/prinsip-kerja-generator-sinkron.html